1,25-Dihydroxyvitamin D3 prevents bone loss of the secondary spongiosa in arthritic rats by an increase of bone formation and mineralization and inhibition of bone resorption
نویسندگان
چکیده
BACKGROUND Active vitamin D metabolites have been shown to have protective effects in experimental arthritis especially when used as preventive treatment. However, because the direct effects of 1,25-dihydroxyvitamin D3 (1,25(OH) 2D3) on bone formation and resorption are very complex, the net effect of 1,25(OH)2D3 on histomorphometric parameters of bone turnover and mineralisation should be investigated. Therefore, we examined the influence of 1,25(OH)2D3 therapy on arthritis-induced alterations of periarticular and axial bone as well as disease activity, inflammation and joint destruction in antigen-induced arthritis (AIA) of the rat. METHODS AIA was induced in 20 eight-week-old female Wistar rats. 10 rats without arthritis were used as healthy controls. AIA rats received 1,25(OH)2D3 (0.2 μg/kg/day, i.p., n = 10) or vehicle (n = 10) at regular intervals for 28 consecutive days beginning 3 days before arthritis induction. Bone structure of the secondary spongiosa of the periarticular and axial bone was analyzed using histomorphometry. Parameters of mineralization were investigated using tetracycline labelling. Clinical disease activity, inflammation and joint destruction were measured by joint swelling and histological investigation, respectively. RESULTS AIA led to significant periarticular bone loss. 1,25(OH)2D3 treatment resulted in a highly significant increase in trabecular bone volume and bone formation rate in comparison to both vehicle-treated AIA and healthy controls at periarticular (p < 0.01 and p < 0.001, respectively) and axial bone (p < 0.001 and p < 0.001, respectively). In addition, bone resorption was reduced by 1,25(OH)2D3 at the axial bone (p < 0.05 vs. vehicle-treated AIA). Joint swelling as well as histological signs of inflammation and joint destruction were not influenced by 1,25(OH)2D3. CONCLUSIONS The results of the study indicate a marked osteoanabolic effect of 1,25(OH)2D3 presumably due to a substantial increase in mineralization. Thus, 1,25(OH)2D3 may be an effective osteoanabolic treatment principle to antagonize the inflammation-associated suppression of bone formation in rheumatoid arthritis.
منابع مشابه
Treatment with vitamin D3 and/or vitamin K2 for postmenopausal osteoporosis.
It is established in Japan that treatment with 1alpha-hydroxyvitamin D3 (alfacalcidol) slightly reduces bone turnover, sustains lumbar bone mineral density (BMD), and prevents osteoporotic vertebral fractures in postmenopausal women with osteoporosis, while vitamin K2 (menatetrenone) enhances gamma-carboxylation of bone glutamic acid residues and secretion of osteocalcin, sustains lumbar BMD, a...
متن کاملP-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats
Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...
متن کاملA potent analog of 1alpha,25-dihydroxyvitamin D3 selectively induces bone formation.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is a principal regulator of calcium and phosphorus homeostasis through actions on intestine, kidney, and bone. 1,25(OH)(2)D(3) is not considered to play a significant role in bone formation, except for its role in supporting mineralization. We report here on the properties of 2-methylene-19-nor-(20S)-1alpha,25(OH)(2)D(3) (2MD), a highly potent analog...
متن کاملP-236: The Role of Trace Elements in Treatment of Ovariectomized Osteoporotic Rats
Background: Osteoporosis is one of the uncomfortable postmenopausal symptoms. The risk of imbalanced nutrition especially traces elements and vitamins are high during post menopause and may lead to osteoporosis due to reduction of content of mineral bone. The aim of this study was to investigate the potential consequence of Selenium (Se) treatment in ovariectomized rat model with osteoporosis i...
متن کاملVitamin-D regulation of bone mineralization and remodelling during growth.
Vitamin D status relates to two bone diseases, osteomalacia and osteoporosis which arise from distinct pathophysiogical pathways. They can occur in children as well as adults. Osteomalacia or rickets arises from a delay in mineralization and can be caused by severe vitamin D deficiency where the key to curing osteomalacia is the endocrine action of circulating 1,25-dihydroxyvitamin D to normali...
متن کامل